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On the Lattice Stability of Metals 
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A tight-binding calculation for body-centred cubic (bcc) and face-centred cubic (fcc) 
lithium is carried out using muffin-tin potentials which differ only in the arrangement 
of the muffin-tin spheres. The essential results are not restricted to lithium but also 
hold for other metals with similar s-p-bands. The bcc structure can be stable for the 
lowest valence states. The stability of fcc increases with increasing valence electron 
concentration. This is due to the kinetic energy which behaves as in an empty lattice 
case. In accordance with the behaviour of the kinetic energy, the lowest energy 
states have the highest distribution probability between neighbouring atoms. They 
are mostly delocalized. The trend in the lattice stability is explained in terms of the 
differences in the packing of the lattices. In real cases where the virial ~heorem holds 
an appropriate part of the kinetic energy is changed into potential energy. Hybridiza- 
tion plays a completely different role from that in covalent compounds. It stabilizes 
a compound by delocalizing the charge density. 
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1. Introduction 

Chaney, Tung, Lafon and Lin [1-3] performed tight-binding (TB) calculations with 
considerable accuracy. In the present work it is shown that it is possible to compare 
different structures by this method. It is accomplished by changing only the arrange- 
ment of  the potential spheres in a constant muffin-tin plane. Such a simple rearrange- 
ment of the atoms ensures that the effects obtained are as purely geometrical as possible 
and that the connection between structure on the one hand and energy, distribution pro- 
bability, and localized orbitals on the other hand is as simple as possible. The TB-method 
in a very simple way provides analytic functions with which these structural effects can 
be described. This can be done specifically in terms of localized orbitals with a given 
point group symmetry which, for example, can be compared with the atomic orbitals. 
In this calculation the same set of eleven independent basis functions was sufficient to 
calculate the entire valence band and about half of the p-bands with reasonable accuracy. 
This allows one to reasonably speak of hybridization in a metal as mixing of localized 
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s- and p-basis orbitals and to discuss its role in the metallic bond. Thus the TB-method 
is a good means of throwing light into the black box of secular procedures in order to 
clarify what happens to the energy values, eigenfunctions and orbitals as a function of 
symmetry and range of interaction with neighbouring atoms. We will see for example 
that in agreement with classical chemical ideas (Krebs [4] ) the lattice stability behaves, 
to a certain extent, as if the energy contributions from the more distant neighbours 
would cancel and as if it would be determined only by nearest neighbour interaction. 

The pseudopotential approach is more efficient for the calculation of energy eigenvalues 
of a particular NFE-metal or a given NFE-aUoy. But whereas the simplicity of this 
approach depends on keeping the formalism in k-space the TB-method handles the 
problems in r-space and thus can give a complementary picture of the metallic bond in 
the NFE-metals. Furthermore it does not depend on the existence of a repulsion 
potential. 

A considerable difficulty in understanding the metallic bond is the very different mathe- 
matical treatment of s-p-bands by second-order pseudopotential perturbation theory 
(see, for example, Harrison [5] and Hafner [6-8] and Heine and Weaire [9]) and 
that of the d-bands by the resonance theory (e.g. Hubbard [10, 11], Dalton [11, 12], 
Deegan [13], Pettifor [14, 15] ). In contrast to both these methods, the TB treatment 
is completely general and provides a means for treating the d-metals in the same way as 
the NFE-metals. 

In the last few years it has become more and more possible to do self-consistent calcu- 
lations with considerable accuracy. One may compare, for example, the work of Averill 
[16] or Rudge [17] or Ellis and Painter [18]. Since the work of Chancy, Lafon and Lin 
[19] it is also possible to do tight-binding calculations self-consistently. But besides 
pseudopotential calculations for NFE-metals there are only a few which compare 
different structures. The calculations of Kumar, Monkhurst and Harris [20] for lithium 
and those of Averill [21] for cesium may serve as examples. 

It would also be very interesting to carry out all discussions of this work for self-con- 
sistent calculations. But this could not replace the given treatment because self-consist- 
ency would change the shape of the atomic potentials in dependence on the lattice and 
on the valence electron concentration. So the change of the atomic potential would 
influence the bonding and stability of the metals besides the lattice differences in the 
geometrical arrangement of the atomic potentials. We could not distinguish between 
both effects. 

In Sect. 2 details of the method and the results are given. Section 3 gives a comparison 
of the results for the bcc and fcc lattices. In Sect. 4 we show that the differences in the 
packing of the lattices determine the differences in the energy values. In Sect. 5 we 
discuss the role of the potential in a metal as far as it can be treated by a non-self-con- 
sistent muffin-tin potential. Section 6 gives the connection with the virial theorem. 
Section 7 shows that hybridization plays a completely different role than in covalent 
compounds. Finally, Sect. 8 gives a glance at the transition metals, because of the 
generality of the TB treatment, and in Sect. 9 we summarize. 
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2. The Tight-Binding Method and its Results 

The TB-method used is that o f  Chaney, Tung and Lafon [2].  There are only two 
differences: 

a) The basis orbitals are constructed from pure Gaussian orbitals. This means that the 
p-type groups are represented by two Gaussian functions with unequal centre. 

b) The atomic potential  used in r-space to calculate the integrals with the strongly 
localized Gaussians is the polynomial  form of the Seitz potential  [22] given in Ref. 
[1] which was used to calculate the Fourier components of  the potential .  This makes 

the calculation of  the potential  energy completely consistent. 

Each s-type group of  Gaussians consists of  a single Gaussian function the exponent  of  
which is taken from Whitten [23]. Each p- type group consists of  a pair of  Gaussians the 
exponents of  which have at first been taken from a lithium free atom 2p orbital. This 

orbital was obtained by a least square fitting to the one given by Fock and Petrashen 
[24] and is shown in Table 1. But then the exponents of  these orbitals and the t n o f  

Table 1. Free atom 2p lithium orbital after 
Fock and Petrashen [ 24] Cn ~ln tn 

0.0845 4.9862 0.05 0.0 0.0 
-0.0845 4.9862 -0.05 0.0 0.0 

1.4078 0.3848 0.03 0.0 0.0 
-1.4078 0.3848 -0.03 0.0 0.0 

0.3801 0.04805 0.43 0.0 0.0 
-0.3801 0.04805 -0.43 0.0 0.0 

0.0068 0.0083 1.59 0.0 0.0 
-0.0068 0.0083 -1.59 0.0 0.0 

Table 2. Coefficients Cn, exponents ~n, and 
centres t n of groups of Gaussians g(r)  = 
]~n en exp ( - n n ( ~  - tn) ~) 

Cn ~n t n/abec 

1.0 34.7874 0.0 0.0 0.0 
1.0 9.1187 0.0 0.0 0.0 
1.0 3.7460 0.0 0.0 0.0 
1.0 1.5384 0.0 0.0 0.0 
1.0 0.7968 0.0 0.0 0.0 
1.0 0.5507 0.0 0.0 0.0 
1.0 0.1300 0.0 0.0 0.0 

1.0 4.9862 0.015341 0.0 0.0 
-1.0 4.9862 -0.015341 0.0 0.0 

1.0 0.3848 0.009205 0.0 0.0 
-1.0 0.3848 -0.009205 0.0 0.0 

1.0 0.1500 0.032000 0.0 0.0 
-1.0 0.1500 -0.032000 0.0 0.0 

1.0 0.1000 0.131936 0.0 0.0 
-1.0 0.1000 -0.131936 0.0 0.0 
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that group with the smallest ~n have been varied to achieve minimal energy values in 
the whole band region. The exponents ~/n and the centres tn of the Gaussians of  these 
groups gn are listed in Table 2. The groups of  Gaussians have been normalized. They 
have been used equally in both  bcc and fcc calculations. 

To make the calculations as equivalent as possible, the Fourier components  of  the 
potential  have been included in both  lattices up to a distance of  7.7 a.u., which means 

that for bcc 41 stars of  the reciprocal lattice and for fcc 47 stars have been included. 

For the muffin-tin plane the value 

VMT = --0.6629 ryd 

given by  W. Kohn and N. Rostoker [25] and for the radius of  the muffin-tin sphere the 

usual value 

r i = 0.5.  aobCCx/~ 

ao bcc = 3.25915 a.u. 

was used. ao bcc is the half lattice constant for bcc lithium. As already mentioned going 
from bcc to fcc only the arrangement of  the muffin-tin spheres changed. The first ten 
Fourier coefficients of  the potentials of the bcc and fcc lattices are given in Table 3. 
The values for bcc are closely related to those of  Schlosser and Marcus [26].  

The direct lattice sums which enter the matrix elements o f  the secular problem have, if 

necessary, been calculated up to tenth nearest neighbours. 

For the eigenfunctions we made the Ansatz 

t~v~ (w) Q~(S~t + iPU~I); Qi v ~ .  Ti 
1 

g~ gp 

Table 3. The first ten Fourier coefficients of the Seitz potential for bcc and fcc lithium 

bee fcc 

b c c  f c e  

ao [~fce[ -No( f )  [ryd] a0-~ [[bcc[ --VO(~ ) [ryd] 
7r 7r 

0 0 0 1.00169 0 0 0 1.00169 
1 1 0 0.16872 1 1 1 0.17496 
2 0 0 0.09422 2 0 0 0.14285 
1 1 2 0.06378 2 2 0 0.07496 
2 2 0 0.05154 1 1 3 0.05678 
3 1 0 0.04561 2 2 2 0.05342 
2 2 2 0.04126 4 0 0 0.04543 
3 2 1 0.03708 3 3 1 0.04133 
4 0 0 0.03300 4 2 0 0.04001 
3 3 0 0.02929 2 2 4 0.03477 
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Table 4. The calculated energy values ez, t given in the second column are compared with those of 
other authors. The numbers in the top row are literature citations, a0 bcc = 3.25915 

2 26 27 28 29 

r l  -0.675 -0.674 -0.68345 -0.685 -0.686 
Fls 0.585 0.617 
F1 2.150 1.879 
His -0.044 -0.039 -0.04615 -0.047 -0.092 
H 1 0.515 0.50 0.571 
P4 -0.182 -0.t75 -0.18395 -0.182 -0.189 
P1 0.161 0.16265 0.150 
Ni -0.410 -0.395 -0.41051 -0.411 -0.404 
N 1 -0.145 -0.19454 -0.192 -0.176 

-0.009 

-0.1788 

-0.4128 
-0.1801 

which makes the general eigenvalue problem real. v is the band index, ~ the wave vector, 
s and p characterize the symmetry o f  the groups of Gaussians g, and Qg is the projection 
operator on a representation of  the translation group. Table 4 shows energy values at 
highly symmetric k-points and compares them with the results of  other authors. The 
results of  this calculation lie deeper than those of  Chaney et al. [2] and the higher energy 
values agree well with those of  Schlosser and Marcus [26]. But even if this were not the 
case, the comparison of  the two lattices would be possible because the calculations are 
done in the same way and therefore the errors would cancel. 

3. The Comparison of  bcc and fcc NFE-metals 

Table 5 and the Figs. 1 ,2 and 3 show that the TB-method is able to provide energy values 
accurate enough to compare different structures even in the case o f  compounds with very 
far ranging orbitals as the NFE-metals. A quantitative estimate of  the energy difference 
between fcc and bcc lithium gives 

Efcc ~-bcc ~s -- "~bs ~ --0.0002 ryd 

This is in agreement with the results of  Harrier [6-8] .  But as the figures show this 
comparison can be done for bcc and fcc in a very simple way using only sixteen energy 
values for fcc and eighteen for bcc. We make use of  two facts: 

a) Going from one of  the directions 100, 110 and 111 to another the s-band changes 
only little. 

b) For bcc and fcc the directions 110 and 111 respectively have almost equal distances 
from F1 to the surface of  the Brillouin zone. This is shown in Figs. 1, 2 and 3. 

The states of  bcc lie slightly deeper (about 0.001 to 0.003 ryd) than those of  fcc in a 
sphere with radius aloat/rr �9 k = 0.3 and along the FP line (PK). But the states of  fcc above 
about alat /n �9 k = 0.5 and along the directions 100 and 111 lie drastically deeper (about 
0.02 to 0.06 ryd). So we may say that with increasing valence electron concentration at 
first bcc is stable and then, at least up to the energy at point X ,  fcc becomes stable. The 

effect along the direction 100 and immediately below k F is so strong that we may say 
that for one electron per atom not only fcc but also hcp is favoured against bcc, because 
the differences between hcp and fcc are much smaller than that between bcc and fcc. 
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Table 5. Energy values of the valence and conduction band for several f-points. A gives the length 
and 100, 110 respectively 111 the direction of 

bcc fcc bcc fcc bcc fcc 
A 100 100 111 110 110 111 

r ]  -0 .675 - 0 . 6 7 4  
r15 0.585 0.564 
0.1 -0 .668 -0 .668  

0.583 0.569 
0.3 -0 .614 -0 .614  

0.512 0.545 
0.45 

~F -0 .411 --0.415 
0.466 0.206 

L'I 
L1 
U~ 
Na 
0.75 

X 

K 

-0.285 -0 .328 
0.464 0.077 

-0 .237 -0 .320  
0.462 0.066 

P4 
P1 
His  -0 .044  
H1 0.515 

-0.615 0.615 -0,615 -0 .615 
0.390 0.375 0,316 0.243 

-0 .540  -0 .540 
0.263 0.099 

-0.419 -0 .417 -0 .436 -0 .445 
0.204 0.170 -0.105 -0 .165 

-0 .360  -0 .357 -0 .412  -0 .429  
0.184 0.144 -0 .142 -0 .189  

-0 .339 -0 .410 
0.137 -0.145 

-0 .257 -0 .254  
0.165 0.115 

-0 .207 -0 .204 
0.161 0.109 

-0 .182 
0.161 

E.,~ Eryd] 

~}bcc X~ 
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Fig. 1. s- and p-bands of lithium 
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Fig. 2. s- and p-bands of lithium 
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Fig. 3. s- and p-bands of lithium 
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Table 6. Mean values of the kinetic energy of the valence and conduction band for several I-points. 
A gives the length and 100, 110 respectively 111 the direction of t~ 

bcc fcc bcc fcc bcc fcc 
A 100 100 111 110 110 111 

1" 1 0.694 0.699 
I ' ls 2.014 1.957 
0.1 0.693 0.693 

2.007 2.023 
0.3 0.677 0.679 

2.095 2.175 
0.45 

I F  0.703 0.688 
2.413 1.766 

Li 
LI 
N~ 
N1 
0.75 

X 

K 

0.768 0.663 
2.425 1.754 
0.803 0.655 
2.294 1.762 

P4 
P1 
HIs 1.027 
H1 2.927 

0.675 0.676 0.676 0.676 
1.889 1.791 1.694 1.513 " 

0.662 0.656 
1.776 1.465 

0.657 0.664 0.578 0.541 
2.016 1.815 1.384 1.313 
0.668 0.531 0.500 
2.078 1.344 1.412 

0.679 0.527 
1.842 2.617 

0.710 0.710 
2.164 1.862 
0.747 0.740 
2.185 1.861 
0.771 
2.189 

Table 6 shows the kinetic energy of  the states given in Table 5. We see that the kinetic 
energy determines whether the energy value of bcc or fcc is lower. This behaviour is 
immediately connected with the distribution probabil i ty  in the centre between neigh- 
bouring atoms along the directions 100, 110 and 111 as is shown in Table 7. The distri- 
bution probabil i ty  at these points is a measure of  its delocalization in the unit  cell. A 
small distribution probabil i ty  there means a high kinetic energy. 

That these results are of  a considerable generality, that  they do not hold only for lithium 
but  also for the other s-p-metals, is shown by an empty  lattice test, the results of  which 
are shown in Table 8. Here the same calculation as above was made with the potential  
equal to zero. It shows the same trends for both  bands as the calculation with the Seitz 
potential.  At first this confirms the relation between the differences in energy and the 
delocalization of  the states we found above. Secondly it shows that  only by symmetry 
reasons does one lattice favour the delocalization of  the states (either at F1 or at the 
band edge) and therefore the one energy more than the other. If  it  would be no symmetry 
effect, it  would be an effect of  the incomplete system of  basis functions or one of  the 
shape of  the atomic potential.  The first possibility is excluded because of  the agreement 
of  our bcc calculation with the APW [30] calculation of  Schlosser and Marcus [26], 
especially in the region where the trend in the energy difference between bcc and fcc is 
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Table 7. Distribution probability Pvt 0C) of the states Cu~ (~) at three points 1:. A gives the length 
of 1~ A and 100, 110 respectively 111 its direction (r/a~ at) takes for the lattice (lat) the values 

bcc fcc 
0.5.(111) 0.5.(110) 
1.0. (100) 1.0. (100) 
1.0.(110) 1.0.(111) 

bcc fcc bcc fcc bcc fcc 
A 100 100 111 110 110 111 

P 0.00850 0.00839 
0.00748 0.00609 
0.00748 0.00609 

X 

K 

0.0395 0.0827 
0.0252 0,0000 
0.0690 0.0000 

0.1464 0.1772 
0.0503 0.1092 
0.0503 0.1092 

0.1041 0.1389 
0.0844 0.0961 
0.0005 0.0961 

Table 8. err values obtained from the Schr6dinger equation with vanishing potential V(r) = 0 for 
the same set of basis orbitals as in the calculation for the Seitz potential 

bcc fcc bcc fcc bcc fcc 
A 100 100 111 110 110 111 

r 0.001(s) 0.002(s) 
1.856(p) 1.742(p) 

L 

x 0.587(p) 0.585(p) 
0.988(s) 0.658(s) 

K 0.659(sp) 0.659(sp) 
0.711(sp) 0.688(sp) 

0.447(sp) 0.439(,0) 
0.506(sp) 0.450(s) 

strongest. For example at the k-points X and L our bcc-fcc differences are 0.083 and 

0.017 ryd whereas the tight binding APW differences are 0.000 and 0.001 ryd respec- 

tively. The second possibility is impossible because of the empty lattice potential. 

The atomic potentials can differ considerably. They are responsible for the differences 
of the metals, for example the differences in the valence electron concentrations where 
the energies of two lattices are exactly equal. So, general trends in the behaviour of the 

metals can only be understood by the lattice differences. But these can determine the 
trend in the energy differences only if the atomic potentials in the valence region are 
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weak enough. This condit ion is fulfilled so extensively for no other group o f  substances 
than the metals. 

That this trend in energy differences we found is no specific proper ty  of  l i thium is seen 
also by  a further argument: although often the s- and p-symmetry  of  the bands is not  
the same as for lithium, however, the relationship between the bands remain the same 
going from one metal  to another. But as is seen from Table 5 or Figs. 1, 2, and 3 the 
difference between the fcc and bcc bands increases going from the s-band to the p-bands, 
at least up to the middle of the p-bands. Thus it does not depend on the symmetry  of  the 
states. 

4. The Effect of  the Geometrical  Packing of  the Lattices 

In Table 9 we show the values of  the function 
S 

f ( r )  = e 
/ 

for different values of  ~ and s. r is the vector to the half  neighbour distance in both  
lattices and s is the number of  lattice stars. The f ( t )  value for bcc, independent ly  from 
7, is always larger than for fcc after convergence of  the lattice sum has been achieved. 

This is due to the fact that  bcc has smaller lattice vectors which can be seen more 
clearly if  we define a mean length of  the latt ice vectors as 

S S 

li L = tit/  1.0 
i i 

The calculated results are shown in Table 10 for the three metal lattices. The is values 
are smallest for bcc and those of  hcp lie between bee and fcc or are equal to that  of  fcc. 

That this difference in the geometrical packing determines the trend of the band 
structure energy difference is confirmed by  the discussion given in connection with the 

empty lattice test at the end of  the last paragraph. 

As for f ( t ) ,  the packing effect causes the distribution probabil i ty  of the states lowest 

in energy for bcc to be larger (on the surface of  the unit cell, Table 7) than that for 
fcc. Because of  the influence of  the phase factor e i~i and the hybridization,  the packing 
intensifies the opposite effect as the energy increases, i.e. for lower energy i t  favours 

Table 9. Convergence values off(r) = l~i e -r/(r- i)2. j are lattice vectors for the half lattice 
constant a bcc = 1.0. t/a lat is given for the lattice lat at the top of the corresponding columns. The 
last column gives the number of lattice stars for which convergence is achieved 

bcc fcc bcc fcc bcc fcc 
0.5(111) 0.5(110) 1.0(100) 1.0(100) 1.0(110) 1.0(111) Star 

34.7874 9.33- 10 -12 2.04.10 -12 1.56.10 - i s  0.0 1.56.10 -15 0.0 1-2 
9.1187 0.002142 0.001438 0.0002192 0.000003 0.0002192 0.000003 1-3 
3.746 0.1207 0.1028 0.0495 0.0157 0.0494 0.0157 1-3 
1.5384 0.7224 0.7031 0.6183 0.5273 0.6183 0.5273 3-4 
0.7968 1.9572 1.9556 1.9413 1.9170 1.9413 1.9170 5-7 
0.5507 3.406373 3.406288 3.404625 3.400901 3.404625 3.400901 9-13 
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Table 10. For the star s given in the first column the contribution to f i r )  ~ x ie -rT( ~ - i)2 is shown. 
i are lattice vectors to the half lattice constant @cc = 1.0.~s are the mean distances ibr the three 
lattices bcc, fcc and hcp defined bye-=  ~Slj I/X~ 1.0. / s o l  fcc and hcp are compared for equal 
distances liL. For bcc and fcc we may make the comparison in the given way up to a star where for 
both lattices the convergence off(r) has been achieved. ~ = 0.5507 

f o ( r -  i ) /~ 

Star bcc fcc bcc fcc hcp ] fcc 

2 0.196 0.180 1.732 1.782 1.782 1.782 
3 O. 122 0.045 1.847 2.028 2.028 2.520 
4 0.023 0.012 2.390 2.633 2.576 3.086 
5 0.0056 0.0029 2.788 2.840 2.861 3.564 
6 0.0041 0.0006 2.881 3.192 3.059 3.984 
7 0.0005 0.0001 2.986 3.300 3.30 a 4.364 
8 0.0002 0.0001 3.361 3.807 3.627 4.714 
9 0.0001 0.00004 3.599 3.860 3.83 a 5.040 

a Interpolated values. 

bcc and for higher energy the fcc. In short we may say that the difference o f  the bonding 
and antibonding properties of  the eigenstates of the two lattices is determined by their 
packing. 

We may consider f ( r )  to be an overlap atomic potential  (OAP). Then we see that the 
potential  of  bcc is smaller than that  of  fcc. Because OAPs of  different lattices have the 
same mean value P 

the extension of  the high potential  regions in bcc is larger than that  of  fcc. This shows 

the difference in the "sperry" character o f  the lattices [31 ] .  In bcc we have the shorter 
mean atomic distances but  the larger lattice caves. 

5. The Role of the Potential 

We have seen that  the kinetic energy differences determine the energy differences between 
bcc and fcc. Comparing Tables 5 and 6 we see that the potential  energy differences 
behave almost always opposite to those of  the energy, but  its differences usually are 
smaller than those of  the kinetic energy. The reason for this is that the more the charge 
density is removed from the surface of  the unit cell the more of  it stays in the atomic 
region of  deep potential.  

We can always describe the potential  in a metal  with a muffin-tin model  as in our Li 
calculation as long as we are only interested in the energy values. Then the following 
situation, typical  for metals, arises: the total charge density in the atomic region of  rapid 
changing potentials can be considered to be lattice independent.  The essential changes 
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of the distribution probability occur in the interstitial region, where the potential does 
not change from one lattice to the other. So the potential energy differences between 
the two lattices almost vanish. In this way we may explain the fact that, especially for 
metals, band structure energy differences show the same trend for the lattice stability 
independent of the particular metal. 

Other authors have arrived at this conclusion, separately for NFE- and transition metals, 
in two different ways [9, 12, 13, 15]. Here it is given in a completely new way based 
on a treatment with localized orbitals. If, by this approach, the same could be proved 
for transition metals then it would constitute a completely general picture of  the metallic 
bond. 

As the symmetry dependence of the differences in the delocalization, respectively the 
energy of the states, shows we can always expect a change in the lattice stability with 
a large enough change in VEC. This is caused by the packing effect, which for the same 
reason favours bcc for the bonding states as it does fcc for the antibonding states. 

By the same argument we see that the trend in the lattice stability is not essentially 
influenced by electron-electron interaction [8, 9, 15]. 

6. The Virial Theorem 

For any real compound the virial theorem holds [30]. 

e -  �89  pao 

E is the total energy, V the mean potential energy and g2o the volume of the unit cell. 
For metals the difference in the total energy of two structures is governed by the differ- 
ence in the band structure energies [5-9, 12, 13, 15]. Therefore the difference in band 
structure energy goes with the difference in the potential part of the band structure 
energy. The ~2 o dependent term vanishes because the energies of different metal lattices 
can be compared for equal atomic volume. 

If we change the valence electron concentration (VEC), keeping the atomic potential 
constant, the virial theorem cannot hold any longer. But it holds if we go from one metal 
to the next (for example in the row Na, Mg, A1), that means, if we change the atomic 
potential with the VEC. As we know from Sect. 3 the trend in the energy differences is 
only lattice dependent and therefore holds equally for different metals. So we can under- 
stand the lattice stability to a large extent by the influence of the lattice differences on 
the potential as was done in [31]. 

Our lithium calculation is not self-consistent and the same potential has been used for 
core and valence states. In an appropriate self-consistent treatment the virial theorem 
must hold and we would have transformed kinetic energy into potential energy. In our 
calculation the energy lower states see a too strongly screened and the higher ones a too 
less screened potential. Because of the packing effect we expect the mistake in the 
screening to be largest for bcc. Therefore, compared to fcc, the lower energy states in 
bcc should be moved into the atomic sphere and the higher energy states into the inter- 
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stitial regions as is demanded by the virial theorem. In fact, for example an increase of  
the delocalization can only be accompanied by a decrease of  the kinetic energy which 
has to be compensated by an increase in the potential energy. 

7. The Role of the Hybridization 

In solids, especially in metals, one can define hybridization unambiguously only if one 
uses for all considered states the same set of  basis orbitals as is done in this calculation. 
It is surprising that this is possible in such a large range of  energy. 

How this ambiguity arises can simply be seen in the following example. Acting with a 
projection operator Ps of  the total symmetric representation of  the inversion point group 
on the p-part of  an eigenfunction, we obtain 

Ps=P2 +P; 
2 i ~ '  v 

PsQr PlU~ I(r) = ~ . ~  PI~ I( r - i )  sin t~ i =P 0 
1 

in spite ofPsp~ i(r) = 0. We see that we have converted the p-symmetry into an 
s-symmetry. 

Let us consider a Wannier function [32] defined by 

BZ 
av(~) - ~ e ic~ ~v~ (r) 

BZ means the Brfllouin zone. If  we take in the first case s 

e ia~ = e  ia-r - -1 

and in the second case p 

e i~ - - - -e  ia-r ---1 

we obtain 
BZ 

a(S)(r) = (G,~ + G: -~) 

BZ 
a(P)( r ) =  ~- (~v:~ - - ~ v : - f )  

r 4 : - r  

a (s) and a (p) are symmetrized Wannier functions [33] of  s- and p-symmetry for which 
we have the solution o f  the Schr6dinger equation 

~(S) (r) = - - ~  ei~i a(S)(r) 
1 

,h(P) (r) =-- X/~ . eiq a(P)(r) 
! 
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We see that we are able to represent one and the same state by orbitals o f  completely 
different symmetry (this holds besides a few states with k in highly symmetric positions). 
In fact, it is possible to describe all occupied states and therefore the whole chemical 
bond, for example in the case of  lithium, in a very simple way with one such symmetrized 
WanNer function. This was shown by the author in Ref. [33]. 

In covalency, hybridization produces directed localized orbitals. In metals, its role is 
completely different. The hybrids can be oriented in all directions, as is seen by the fact 
that we have along all three directions 100, 110, and 111 strong s-p-hybridization. Also 
no estimate of  the energy is possible considering simply the symmetry of  the orbitals. 
The energy difference between bcc and fcc increases with energy. As is seen from Figs. 
1, 2, and 3, this holds for the s-states (N 1 , L1) as well as for the p-states (N'I, L'I). A 
further reason is that the s and p parts of  the functions can be interchanged as was shown 

above. 

But the ratio of  the different symmetry contributions to the eigenfunctions may be 
used as a measure of the energy, as can be seen in Table 11. 

Our Ansatz for the eigenfunctions was 

~v~ (r) = Q~ (s~ t + ip~ I) 

s and p characterize the symmetry parts of the TB orbitals. To arrive at real hybrids we 

may perform 

+ 

~v +, = (COS~ i "h,(m - i )  + sinai " h _ , ( m - i ) )  
I 

h+~ (r) = s~, i(r) + p[~ I(r) 

Several orbitals for highly symmetric k-points are shown in Figs. 4 and 5. 

We know from the considerations of  Sect. 2 that the energy values of  that structure lie 
deepest where we have the largest delocalization. By hybridization, this may be achieved 
in two ways. First by increasing the distribution probability in each state, particularly 

Table 11. Ratios of p- to s-contribution to the 
square norm of the valence states ~vt for the ~ 100 110 111 
values with the length aloatfir[ r I = 0.3 and the 
directions 100, 110 and 111. alo at is the half bcc 0.940 0.192 0.440 
lattice constant of bcc, respectively fcc fcc 1.760 0.783 0.479 
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tp (a.u.) 

1.0 

Fig. 4. Tight-binding orbitals ~ov~ (1:) of  several states 

Cv~ (r) = (1/@V) 2i ei~i ~ov~(r - i) 

and the atomic 2s orbital  of li thium, aobCCx/3-~ is the half  distance 
between nearest neighbours in bcc. Orbitals of comparable v~ but  
different lattices are practically equal. Also, in the atomic region 
orbitals of different energies practically do not  differ 

0 1.0 G bcc~ r (.au.] 

between neighbouring atoms, and secondly by increasing the number of states for which 
this happens. Both trends try to distribute the charge density spherically around the 
atomic centres and this may occur at different distances from the centre in different 
lattices. Also, any resemblance of the lattice differences in the charge distribution with 
that of directed bonds may be understood as a superposition of different spherically 
distributed charges. 

The first case may happen if, for example, an antibonding s-function mixes with a 
bonding p-function. From Table 5 we see that we have for fcc the smaller energy 
separation between the s- and p-bands. In addition, as the distances in the 100 direction 
are very different we see, particularly from comparison of the energies in this direction, 
that fcc favours the hybridization. This holds more as the energy in the s-band increases 
and it is not restricted to 100, as we see from Table 11. So, with increasing VEC, hybri- 
dization favours fcc against bcc. 
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~o (a.u.) 

1.0 

Fig. 5. Tight-binding orbitals ~Ov~ (10 of two states 

~vt(r)  = (l /x/-N) ~i elr i ~ v t ( r  - i) 

and the atomic 2p orbital  of  lithium, abecw/3-~ is the half  distance 
between nearest neighbours in bcc. In spite of  belonging to two 
different lattices the orbitals are practically equal 

2p (atom) 

~ N  1' bcc, [1' fcc 

1'.0 ao /~  r'(a.u.] ~" 

8. A Glance at the Transition Metals 

It should be noticed that this work never makes use of the facts that are only charac- 
teristic of the NFE-metals. The TB-method and the essence of the considerations 
presented could also apply to transition metals. We have already seen that in principle 
it is possible to describe a d-band with tight-binding orbitals of any symmetry we wish 
(with the restriction mentioned in the foregoing section). For the tight-binding method 
therefore the d-symmetry makes no principle difference to a treatment with s- or p- 
orbitals. Further on, the packing effect is completely geometrical and does not depend 
on the range of interaction between the atoms. Therefore, we would expect that for 
transition metals the stability sequence with increasing VEC is bcc-fcc. 

Concerning the hybridization, Altmann, Coulson and Hume-Rothery [34, 35] gave an 
explanation based on directed hybrids. For example, they give a stronger s-p-mixing 
with the d-states for fcc than for bcc. This seems to agree with the present work. How- 
ever, the hybridization is interpreted completely different here and we would also have 
to consider the hybrids of those resonance structures which the above-mentioned authors 
assumed did not contribute to the determination of the structure and were, therefore, 
neglected. 
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9. Summary 

This work presents the first comparison of  metal lattices using a TB calculation. The 
essential characteristics are that  pure Gaussians have been used to represent the basis 
functions and a model  potential  was used which produces the band structure energy 
differences only by  differences in the geometry of  the bcc and fcc lattices. 

The band structure energy difference is determined in this non-self-consistent calculation 
by  the kinetic band s~:ructure energy difference. This depends on the dissimilarity in the 
delocalization of  the distribution probabil i ty.  The more delocalized states have the lowest 

energies. 

This difference in turn is determined by  the variance in the geometrical packing of  the 
lattices which is characterized by the mean length of  the vectors of  the latt ice stars 
which are smaller for bcc than for fcc. This distribution probabi l i ty  of  the more bonding 
states of  bcc is caused to be more delocalized than in fcc. The reverse holds for the 
antibonding states. Comparing bcc with fcc, their increase in energy is for the same 
reason as the decrease of  the energy of  the bonding states. 

The generality of  these considerations is especially shown by an empty  latt ice test, in 
which the t rend in the band structure energy difference is the same as for the calculation 
with non-vanishing potential .  It  shows that  for metals, the band structure energy differ- 
ences are really determined by the packing effect, that  their trend is the same for all 

NFE-metals and that  we always have to expect a change in the lattice stabili ty if VEC 
is sufficiently changed. 

The virial theorem demands that the mean potential  band structure energy varies as the 
band structure energy differences. This would happen if we were to make a self-consistent 
calculation. 

The hybridizat ion plays a completely different role from that in a covalent solid. For  
metals, it favours that structure which has the most delocalized charge density. Because 
of  the generality of  the considerations given, they should also hold for transit ion metals. 
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